Prismatic Beam under parametric excitation

Prismatic Beam under parametric excitation

Contents

We consider a clamped-pinned beam.

Nayfeh [1] and Li [2] inverstigated the forced response of such a system under external harmonic response. Specifically, modal expansion (with linear modes) is used to transfer PDEs to a set of ODEs

This set of ODEs has to be adjusted for the case where the harmonic excitation occurs in an axial direction and direct transverse excitation is applied as , where are dimensionless coordinates along the beam . Then the equations of the modal coordinates in transverse direction read

where the coefficients are defined in terms of the spatial eigenmodes as

and

Here no mode is ecited externall so for all and . The system is forced around the principal resonance of the first mode so

[1] Nayfeh, A. H., Mook, D. T., & Sridhar, S. (1974). Nonlinear analysis of the forced response of structural elements. The Journal of the Acoustical Society of America, 55(2), 281-291.

[2] M. Li, S. Jain, and G. Haller. Nonlinear analysis of forced mechanical systems with internal resonance using spectralsubmanifolds–part I: Periodic response and forced response curve. arXiv preprint arXiv:2106.05162, 2021

Setup Dynamical System

clear all;

rLsq = 1e-4;
cs  = [100,200,300,400];
n = 10;               % number of modes

ii = 1;
for c = cs
[mass,damp,stiff,fnl,fext] = build_model_parametric(c,rLsq,n);

% Create
order = 2;
DS = DynamicalSystem(order);
set(DS,'M',mass,'C',damp,'K',stiff,'fnl',fnl);
set(DS.Options,'Emax',5,'Nmax',10,'notation','multiindex')
% Forcing
DS.add_forcing(fext);
Getting nonlinearity coefficients
Loaded coefficients from storage
Loaded coefficients from storage

Linear Modal Analysis

% Analyse spectrum
[V,D,W_evec] = DS.linear_spectral_analysis();

% Choose Master subspace (perform resonance analysis)

% Set up SSM object
S = SSM(DS);
set(S.Options, 'reltol', 0.3,'notation','multiindex')

%Choose Master subspace
resModes = [1,2];
S.choose_E(resModes);
Due to high-dimensionality, we compute only the first 5 eigenvalues with the smallest magnitude. These would also be used to compute the spectral quotients
Assuming a proportional damping hypthesis with symmetric matrices
modal damping ratio for 1 mode is 1.874028e-03
modal damping ratio for 2 mode is 5.783382e-04
modal damping ratio for 3 mode is 2.772339e-04
modal damping ratio for 4 mode is 1.621083e-04
modal damping ratio for 5 mode is 1.062379e-04

 The first 10 nonzero eigenvalues are given as 
  -0.0100 + 5.3361i
  -0.0100 - 5.3361i
  -0.0100 +17.2909i
  -0.0100 -17.2909i
  -0.0100 +36.0706i
  -0.0100 -36.0706i
  -0.0100 +61.6872i
  -0.0100 -61.6872i
  -0.0100 +94.1284i
  -0.0100 -94.1284i

sigma_out = 1
sigma_in = 1
Due to high-dimensionality, we compute only the first 5 eigenvalues with the smallest magnitude. These would also be used to compute the spectral quotients
Assuming a proportional damping hypthesis with symmetric matrices
modal damping ratio for 1 mode is 3.748056e-03
modal damping ratio for 2 mode is 1.156676e-03
modal damping ratio for 3 mode is 5.544678e-04
modal damping ratio for 4 mode is 3.242166e-04
modal damping ratio for 5 mode is 2.124758e-04

 The first 10 nonzero eigenvalues are given as 
  -0.0200 + 5.3361i
  -0.0200 - 5.3361i
  -0.0200 +17.2909i
  -0.0200 -17.2909i
  -0.0200 +36.0706i
  -0.0200 -36.0706i
  -0.0200 +61.6872i
  -0.0200 -61.6872i
  -0.0200 +94.1284i
  -0.0200 -94.1284i

sigma_out = 1
sigma_in = 1

Stability Diagram from Reduced Dynamics

We extract the stability diagram using continuation of bifurcations. By extending the dynamical system

to an autonomous system of variables the trivial fixed point of the paremtrically excited system can be interpreted as the periodic orbit . Any change of the stability behaviour of this periodic orbit is then given by some bifurcation. At the stability boundary of the principal resonance with nontrivial periodic orbits with response period emerge. If continuation of periodic orbits is used then these bifurcations show up as period doubling ('PD') bifurcations. Initially continuing periodic orbits leads to a saddle node ('SN') bifurcation. The function extract_Stability_Diagram allows to chose between these two options for constructing the stability diagram. Settings

set(S.contOptions,'PtMX',40,'bi_direct',true)
set(S.FRCOptions,'branchSwitch',true)
PlotSD = false;
order  = 5;

% Initial condition and parameter range


omega0 = imag(S.E.spectrum(1));
p0 = [2*omega0,0.01]; % Initial condition

OmegaRange =[10.3,11];
epRange = [0,1];

% Computation

startSDSSM = tic;
SD = S.extract_Stability_Diagram(resModes, order, OmegaRange,epRange,'amp', p0,'PD',PlotSD);
timings(ii).SDSSM = toc(startSDSSM);

Damping Parameter: c = 100

sigma_out = 1
sigma_in = 1
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 5.72E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 6.26E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 7.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 8.53E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.07e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.0705e+01      1  EP      1.0000e-02   5.8874e-01
    1  00:00:00   1.0705e+01      2  EP      3.4694e-18   5.8874e-01

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:01   1.0705e+01      3  EP      1.0000e-02   5.8874e-01
    1  00:00:01   1.0705e+01      4  PD      5.3576e-02   5.8874e-01
    5  00:00:01   1.0798e+01      5  EP      1.0000e+00   5.8874e-01

 Run='ROM_family_bif1': Continue bifurcations from point 4 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          5.59e-09  1.67e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   1.6688e+01      1  EP      1.0672e+01   5.8874e-01   5.3576e-02
   10  00:00:04   1.6628e+01      2          1.0624e+01   5.9139e-01   1.3856e-01
   20  00:00:08   1.6459e+01      3          1.0479e+01   5.9959e-01   5.1992e-01
   26  00:00:11   1.6276e+01      4  EP      1.0300e+01   6.1002e-01   9.9843e-01

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:12   1.6688e+01      5  EP      1.0672e+01   5.8874e-01   5.3576e-02
   10  00:00:15   1.6750e+01      6          1.0720e+01   5.8612e-01   1.3856e-01
   20  00:00:19   1.6950e+01      7          1.0865e+01   5.7828e-01   5.1993e-01
   25  00:00:22   1.7152e+01      8  EP      1.1000e+01   5.7120e-01   8.7979e-01
Total time spent on Stability Diagram computation = 00:00:27

Damping Parameter: c = 200

sigma_out = 1
sigma_in = 1
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 5.72E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 6.26E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 7.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 8.53E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          8.88e-16  1.07e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.0705e+01      1  EP      1.0000e-02   5.8875e-01
    1  00:00:00   1.0705e+01      2  EP      3.4694e-18   5.8875e-01

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.0705e+01      3  EP      1.0000e-02   5.8875e-01
    2  00:00:00   1.0706e+01      4  PD      1.0715e-01   5.8875e-01
    5  00:00:00   1.0798e+01      5  EP      1.0000e+00   5.8875e-01

 Run='ROM_family_bif1': Continue bifurcations from point 4 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.23e-08  1.67e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   1.6688e+01      1  EP      1.0672e+01   5.8875e-01   1.0715e-01
   10  00:00:04   1.6576e+01      2          1.0581e+01   5.9382e-01   2.6675e-01
   20  00:00:08   1.6364e+01      3          1.0389e+01   6.0477e-01   7.6491e-01
   23  00:00:09   1.6277e+01      4  EP      1.0300e+01   6.1002e-01   1.0026e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:10   1.6688e+01      5  EP      1.0672e+01   5.8875e-01   1.0715e-01
   10  00:00:13   1.6808e+01      6          1.0763e+01   5.8376e-01   2.6675e-01
   20  00:00:17   1.7084e+01      7          1.0955e+01   5.7355e-01   7.6493e-01
   22  00:00:18   1.7153e+01      8  EP      1.1000e+01   5.7120e-01   8.8481e-01
Total time spent on Stability Diagram computation = 00:00:20

Damping Parameter: c = 300

sigma_out = 1
sigma_in = 1
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 5.72E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 6.26E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 7.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 8.53E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          8.88e-16  1.07e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.0704e+01      1  EP      1.0000e-02   5.8875e-01
    1  00:00:00   1.0704e+01      2  EP      3.4694e-18   5.8875e-01

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.0704e+01      3  EP      1.0000e-02   5.8875e-01
    2  00:00:00   1.0707e+01      4  PD      1.6072e-01   5.8875e-01
    5  00:00:00   1.0797e+01      5  EP      1.0000e+00   5.8875e-01

 Run='ROM_family_bif1': Continue bifurcations from point 4 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.12e-08  1.67e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   1.6689e+01      1  EP      1.0672e+01   5.8875e-01   1.6072e-01
   10  00:00:04   1.6534e+01      2          1.0545e+01   5.9586e-01   3.7699e-01
   20  00:00:08   1.6289e+01      3          1.0312e+01   6.0930e-01   9.7729e-01
   21  00:00:08   1.6278e+01      4  EP      1.0300e+01   6.1002e-01   1.0095e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:09   1.6689e+01      5  EP      1.0672e+01   5.8875e-01   1.6072e-01
   10  00:00:12   1.6859e+01      6          1.0799e+01   5.8181e-01   3.7699e-01
   20  00:00:17   1.7154e+01      7  EP      1.1000e+01   5.7120e-01   8.9312e-01
Total time spent on Stability Diagram computation = 00:00:18

Damping Parameter: c = 400

sigma_out = 1
sigma_in = 1
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 5.72E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 6.26E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 7.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 8.53E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.07e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.0704e+01      1  EP      1.0000e-02   5.8876e-01
    1  00:00:00   1.0704e+01      2  EP      3.4694e-18   5.8876e-01

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.0704e+01      3  EP      1.0000e-02   5.8876e-01
    2  00:00:00   1.0709e+01      4  PD      2.1430e-01   5.8876e-01
    5  00:00:00   1.0797e+01      5  EP      1.0000e+00   5.8876e-01

 Run='ROM_family_bif1': Continue bifurcations from point 4 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          7.35e-09  1.67e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   1.6690e+01      1  EP      1.0672e+01   5.8876e-01   2.1430e-01
   10  00:00:04   1.6500e+01      2          1.0514e+01   5.9759e-01   4.7368e-01
   19  00:00:07   1.6279e+01      3  EP      1.0300e+01   6.1002e-01   1.0190e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:08   1.6690e+01      4  EP      1.0672e+01   5.8876e-01   2.1430e-01
   10  00:00:11   1.6902e+01      5          1.0830e+01   5.8019e-01   4.7369e-01
   18  00:00:15   1.7155e+01      6  EP      1.1000e+01   5.7120e-01   9.0463e-01
Total time spent on Stability Diagram computation = 00:00:16

Verification: Collocation using coco

Dankowicz, H., & Schilder, F. (2013). Recipes for Continuation, SIAM Philadelphia. https://doi.org/10.1137/1.9781611972573

nCycles = 10;
coco_sd = cocoWrapper(DS, nCycles, []);
set(coco_sd.Options, 'PtMX',70, 'bi_direct',true);
set(coco_sd,'branchSwitch',true)

startcoco = tic;
SD_full = coco_sd.extract_Stability_Diagram(OmegaRange,epRange,'amp',p0,'PD',PlotSD);
timings(ii).cocoSD = toc(startcoco);


name = strcat('SD_damp',num2str(c),'n',num2str(n));
save(name, 'SD','SD_full')

ii = ii+1;

Damping Parameter: c = 100

 Run='full_detect_bif': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.51e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.5104e+01      1  EP      1.0000e-02   1.0672e+01
    1  00:00:00   1.5104e+01      2  EP      3.4694e-18   1.0672e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:01   1.5104e+01      3  EP      1.0000e-02   1.0672e+01
    1  00:00:01   1.5104e+01      4  PD      5.3576e-02   1.0672e+01
    5  00:00:02   1.5170e+01      5  EP      1.0000e+00   1.0672e+01

 Run='full_family_bif_1': Continue bifurcations from point 4 in run 'full_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          2.00e-09  1.67e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   1.6683e+01      1  EP      1.0672e+01   5.8874e-01   5.3576e-02
   10  00:00:04   1.5888e+01      2          1.0614e+01   5.9196e-01   1.6375e-01
   20  00:00:08   1.5681e+01      3          1.0473e+01   5.9994e-01   5.3188e-01
   24  00:00:11   1.5474e+01      4  EP      1.0300e+01   6.1002e-01   9.8404e-01

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:11   1.6683e+01      5  EP      1.0672e+01   5.8874e-01   5.3576e-02
   10  00:00:14   1.8313e+01      6          1.0686e+01   5.8798e-01   6.5272e-02
   20  00:00:18   2.1160e+01      7          1.0702e+01   5.8712e-01   9.5665e-02
   30  00:00:21   2.4639e+01      8          1.0723e+01   5.8595e-01   1.4685e-01
   40  00:00:26   2.8467e+01      9          1.0769e+01   5.8343e-01   2.6708e-01
   50  00:00:31   3.1148e+01     10          1.0926e+01   5.7509e-01   6.8987e-01
   55  00:00:33   3.1565e+01     11  EP      1.1000e+01   5.7120e-01   8.9590e-01

Damping Parameter: c = 200

 Run='full_detect_bif': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          8.88e-16  1.51e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.5104e+01      1  EP      1.0000e-02   1.0672e+01
    1  00:00:00   1.5104e+01      2  EP      3.4694e-18   1.0672e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.5104e+01      3  EP      1.0000e-02   1.0672e+01
    2  00:00:01   1.5105e+01      4  PD      1.0715e-01   1.0672e+01
    5  00:00:02   1.5170e+01      5  EP      1.0000e+00   1.0672e+01

 Run='full_family_bif_1': Continue bifurcations from point 4 in run 'full_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          8.14e-10  1.67e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   1.6678e+01      1  EP      1.0672e+01   5.8875e-01   1.0715e-01
   10  00:00:04   1.5835e+01      2          1.0571e+01   5.9438e-01   2.9001e-01
   20  00:00:08   1.5578e+01      3          1.0387e+01   6.0491e-01   7.6235e-01
   22  00:00:10   1.5476e+01      4  EP      1.0300e+01   6.1002e-01   9.8814e-01

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:10   1.6678e+01      5  EP      1.0672e+01   5.8875e-01   1.0715e-01
   10  00:00:13   1.8323e+01      6          1.0700e+01   5.8721e-01   1.3073e-01
   20  00:00:17   2.1182e+01      7          1.0731e+01   5.8550e-01   1.9197e-01
   30  00:00:20   2.4674e+01      8          1.0774e+01   5.8317e-01   2.9487e-01
   40  00:00:25   2.8525e+01      9          1.0863e+01   5.7838e-01   5.2867e-01
   47  00:00:29   3.0637e+01     10  EP      1.1000e+01   5.7120e-01   9.0103e-01

Damping Parameter: c = 300

 Run='full_detect_bif': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          8.88e-16  1.51e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.5104e+01      1  EP      1.0000e-02   1.0672e+01
    1  00:00:00   1.5104e+01      2  EP      3.4694e-18   1.0672e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.5104e+01      3  EP      1.0000e-02   1.0672e+01
    2  00:00:02   1.5106e+01      4  PD      1.6073e-01   1.0672e+01
    5  00:00:02   1.5170e+01      5  EP      1.0000e+00   1.0672e+01

 Run='full_family_bif_1': Continue bifurcations from point 4 in run 'full_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          6.86e-09  1.67e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   1.6673e+01      1  EP      1.0672e+01   5.8875e-01   1.6073e-01
   10  00:00:04   1.5800e+01      2          1.0539e+01   5.9618e-01   3.8848e-01
   20  00:00:09   1.5503e+01      3          1.0320e+01   6.0881e-01   9.4242e-01
   21  00:00:09   1.5479e+01      4  EP      1.0300e+01   6.1002e-01   9.9493e-01

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:10   1.6673e+01      5  EP      1.0672e+01   5.8875e-01   1.6073e-01
   10  00:00:13   1.8332e+01      6          1.0714e+01   5.8645e-01   1.9637e-01
   20  00:00:17   2.1203e+01      7          1.0761e+01   5.8388e-01   2.8889e-01
   30  00:00:21   2.4709e+01      8          1.0825e+01   5.8042e-01   4.4390e-01
   40  00:00:25   2.8558e+01      9          1.0953e+01   5.7366e-01   7.8087e-01
   43  00:00:27   2.9349e+01     10  EP      1.1000e+01   5.7120e-01   9.0953e-01

Damping Parameter: c = 400

 Run='full_detect_bif': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.51e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.5104e+01      1  EP      1.0000e-02   1.0672e+01
    1  00:00:00   1.5104e+01      2  EP      3.4694e-18   1.0672e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.5104e+01      3  EP      1.0000e-02   1.0672e+01
    2  00:00:02   1.5107e+01      4  PD      2.1431e-01   1.0672e+01
    5  00:00:02   1.5170e+01      5  EP      1.0000e+00   1.0672e+01

 Run='full_family_bif_1': Continue bifurcations from point 4 in run 'full_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          4.72e-09  1.67e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   1.6668e+01      1  EP      1.0672e+01   5.8876e-01   2.1431e-01
   10  00:00:04   1.5770e+01      2          1.0511e+01   5.9778e-01   4.7860e-01
   19  00:00:09   1.5483e+01      3  EP      1.0300e+01   6.1002e-01   1.0044e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:09   1.6668e+01      4  EP      1.0672e+01   5.8876e-01   2.1431e-01
   10  00:00:12   1.8342e+01      5          1.0728e+01   5.8569e-01   2.6220e-01
   20  00:00:16   2.1226e+01      6          1.0791e+01   5.8226e-01   3.8642e-01
   30  00:00:20   2.4743e+01      7          1.0876e+01   5.7770e-01   5.9366e-01
   39  00:00:25   2.7938e+01      8  EP      1.1000e+01   5.7120e-01   9.2128e-01
end

Plot for paper

timings
PBplotSD(n,cs); % Plot SD for various damping parameters