EXTRACT_BACKBONE
Contents
function BB = extract_backbone(obj, modes, omegaRange, order, varargin)
Extract backbone
This function extracts the Backbone Curves in polar coordinates. For two-dimensional SSMs, we use the normal form of paramaterization, where we choose the following form of autonomous reduced dynamics as
Subsitution of and to yields
where
It follows that the backbone curves in polar coordinates is given by .
The range of rho is determined by quadratic approximation of backbone curve if varargin is empty. Otherwise, it is specified via varargin.
f1 = figure('Name','Norm'); if isnumeric(obj.FRCOptions.outdof) f2 = figure('Name',['Amplitude at DOFs ' num2str(obj.FRCOptions.outdof(:)')]); else f2 = figure('Name','Amplitude at DOFs'); end figs = [f1, f2]; colors = get(0,'defaultaxescolororder'); assert(numel(modes)==2,'The analytic backbone computation can only be performed for a two-dimensional SSM/LSM') % get options [nt, nRho, nOmega, rhoScale, outdof, saveIC] = ... deal(obj.FRCOptions.nt, obj.FRCOptions.nRho, ... obj.FRCOptions.nPar, obj.FRCOptions.rhoScale, ... obj.FRCOptions.outdof, obj.FRCOptions.saveIC);
setup
startBB = tic; obj.choose_E(modes); lambda = obj.E.spectrum(1); % some checks assert(~isreal(lambda),'The eigenvalues associated to the modal subspace must be complex for analytic backbone computation') omega0 = abs(imag(lambda)); assert(prod([omega0-omegaRange(1),omega0-omegaRange(end)])<0,'The supplied omegaRange must contain the natural frequency associated to the modes')
loop over orders
norders = numel(order);
compute autonomous SSM coefficients
[W0,R0] = obj.compute_whisker(order(end)); gamma = compute_gamma(R0); BB = cell(norders,1); for k=1:norders
compute backbone
gidx = round((order(k)+0.5)/2)-1; if numel(varargin)==0 rho = compute_rho_grid(omegaRange,nOmega,rhoScale,gamma(1:gidx),lambda,nRho); else rhomax = varargin{1}; rho = linspace(0.001*rhomax,rhomax,nRho); end [~,b] = frc_ab(rho, 0, gamma(1:gidx), lambda); omega = b./rho; idx = [find(omega<omegaRange(1)) find(omega>omegaRange(2))]; rho(idx) = []; omega(idx) = [];
Backbone curves in Physical Coordinates
stability = true(size(rho)); psi = zeros(size(rho)); epsilon = 0; BC = compute_output_polar2D(rho,psi,stability,epsilon,omega,W0(1:order(k)),[],1,nt, saveIC, outdof); BB{k} = BC;
plotting
plot_FRC(BC,outdof,order(k),'freq','lines',figs,colors(k,:));
end if norders==1 BB = BB{1}; end totalComputationTime = toc(startBB); disp(['Total time spent on backbone curve computation = ' datestr(datenum(0,0,0,0,0,totalComputationTime),'HH:MM:SS')])
end function rho = compute_rho_grid(omegaRange,nOmega,rhoScale,gamma,lambda,nRho)
omega = linspace(omegaRange(1),omegaRange(end), nOmega);
Explicit quadratic approximation of the backbone curve
rho_bb = real(sqrt((omega - imag(lambda))/imag(gamma(1)))); rhomax = rhoScale * max(rho_bb); rho = (rhomax/nRho) * (1:nRho);
end