Reduced to full coordinates
function [z] = reduced_to_full(p,W0,W1,epsilon)
This function maps the parametrisation coordinates onto the non-autonomous manifold in the full phase space.
nt = size(p,2); if isempty(W1) || epsilon == 0 N = size(W0(1).coeffs ,1); z = zeros(N,1); else % Nonautonomous first order time contributions num_kappa = numel(W1); phi = linspace(0,2*pi,nt); % assuming single periodic frequency N = size(W0(1).coeffs ,1); z = zeros(N,1); for i = 1:num_kappa order = numel(W1(i).W); % zeroth order W10 = W1(i).W(1); z = z + epsilon * real( W10.coeffs * exp(1i * W1(i).kappa * phi)); % Higher order time contributions for j = 1:order-1 %array starting at 0 Wij = W1(i).W(j+1); z = z + epsilon * real(expand_multiindex(Wij,p) .* exp(1i * W1(i).kappa * phi)); end end end for j = 1:length(W0) z = z + real(expand_multiindex(W0(j),p)); end
end