BernoulliBeam_SD

Parametric resonance of a bernoulli beam

Contents

Euler Bernoulli beam with cubic spring and damper

Instead of external excitation on the last node, the excitation here is of parametric type. The tip of the beam is subject to linear parametric excitation. The experiment this example is based on can be found in

Chen, C. C. & Yeh, M. K.: Parametric instability of a beam under electromagnetic excitation. Journal of Sound and Vibration 240,747–764, https://doi.org/10.1006/jsvi.2000.3255; A schematic depiction of the model is given by

clear all

Generate model

nElements = 5;
kappa = 50; % cubic spring
gamma = 0.01; % cubic damping
sigmas = [10,20,30,40]; % Damping coefficients
ii = 1;
for sigma = sigmas
    [M,C,K,fnl,fext] = build_model_parametric(kappa, gamma, nElements);
    C = sigma * C;
    n = length(M);

Dynamical system setup

We consider the parametrically excited system

which can be written in the first-order form as

where

order = 2;
DS = DynamicalSystem(order);
set(DS,'M',M,'C',C,'K',K,'fnl',fnl);
set(DS.Options,'Emax',5,'Nmax',10,'notation','multiindex')
epsilon = 0.002;
DS.add_forcing(fext,epsilon);

Linear Modal Analysis

% Analyse spectrum
[V,D,W_evec] = DS.linear_spectral_analysis();

% Choose Master subspace (perform resonance analysis)

% Set up SSM object
S = SSM(DS);
set(S.Options, 'reltol', 0.3,'notation','multiindex')

%Choose Master subspace
resModes = [1,2];
S.choose_E(resModes);

Damping parameter: sigma = 10

Due to high-dimensionality, we compute only the first 5 eigenvalues with the smallest magnitude. These would also be used to compute the spectral quotients
Assuming a proportional damping hypthesis with symmetric matrices
modal damping ratio for 1 mode is 8.840017e-03
modal damping ratio for 2 mode is 5.488086e-02
modal damping ratio for 3 mode is 1.541080e-01
modal damping ratio for 4 mode is 3.044305e-01
modal damping ratio for 5 mode is 5.052761e-01

 The first 10 nonzero eigenvalues are given as 
   1.0e+02 *

  -0.0006 + 0.0700i
  -0.0006 - 0.0700i
  -0.0241 + 0.4383i
  -0.0241 - 0.4383i
  -0.1900 + 1.2181i
  -0.1900 - 1.2181i
  -0.7414 + 2.3198i
  -0.7414 - 2.3198i
  -2.0424 + 3.4882i
  -2.0424 - 3.4882i

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 3300
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i

sigma_in = 3300

Damping parameter: sigma = 20

Due to high-dimensionality, we compute only the first 5 eigenvalues with the smallest magnitude. These would also be used to compute the spectral quotients
Assuming a proportional damping hypthesis with symmetric matrices
modal damping ratio for 1 mode is 1.768003e-02
modal damping ratio for 2 mode is 1.097617e-01
modal damping ratio for 3 mode is 3.082160e-01
modal damping ratio for 4 mode is 6.088610e-01
modal damping ratio for 5 mode is 1.010552e+00

 The first 10 nonzero eigenvalues are given as 
   1.0e+02 *

  -0.0012 + 0.0700i
  -0.0012 - 0.0700i
  -0.0482 + 0.4363i
  -0.0482 - 0.4363i
  -0.3800 + 1.1728i
  -0.3800 - 1.1728i
  -1.4828 + 1.9320i
  -1.4828 - 1.9320i
  -3.4961 + 0.0000i
  -4.6736 + 0.0000i

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 3776
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.1238 + 6.9995i
  -0.1238 + 6.9995i
  -0.1238 + 6.9995i
  -0.1238 + 6.9995i
  -0.1238 - 6.9995i
  -0.1238 - 6.9995i
  -0.1238 - 6.9995i
  -0.1238 - 6.9995i

sigma_in = 3776

Damping parameter: sigma = 30

Due to high-dimensionality, we compute only the first 5 eigenvalues with the smallest magnitude. These would also be used to compute the spectral quotients
Assuming a proportional damping hypthesis with symmetric matrices
modal damping ratio for 1 mode is 2.652005e-02
modal damping ratio for 2 mode is 1.646426e-01
modal damping ratio for 3 mode is 4.623240e-01
modal damping ratio for 4 mode is 9.132915e-01
modal damping ratio for 5 mode is 1.515828e+00

 The first 10 nonzero eigenvalues are given as 
   1.0e+03 *

  -0.0002 + 0.0070i
  -0.0002 - 0.0070i
  -0.0072 + 0.0433i
  -0.0072 - 0.0433i
  -0.0570 + 0.1093i
  -0.0570 - 0.1093i
  -0.1522 + 0.0000i
  -0.2224 + 0.0992i
  -0.2224 - 0.0992i
  -1.0732 + 0.0000i

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 5780
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.1857 + 6.9981i
  -0.1857 + 6.9981i
  -0.1857 + 6.9981i
  -0.1857 + 6.9981i
  -0.1857 - 6.9981i
  -0.1857 - 6.9981i
  -0.1857 - 6.9981i
  -0.1857 - 6.9981i

sigma_in = 5780

Damping parameter: sigma = 40

Due to high-dimensionality, we compute only the first 5 eigenvalues with the smallest magnitude. These would also be used to compute the spectral quotients
Assuming a proportional damping hypthesis with symmetric matrices
modal damping ratio for 1 mode is 3.536007e-02
modal damping ratio for 2 mode is 2.195234e-01
modal damping ratio for 3 mode is 6.164321e-01
modal damping ratio for 4 mode is 1.217722e+00
modal damping ratio for 5 mode is 2.021105e+00

 The first 10 nonzero eigenvalues are given as 
   1.0e+03 *

  -0.0002 + 0.0070i
  -0.0002 - 0.0070i
  -0.0096 + 0.0428i
  -0.0096 - 0.0428i
  -0.0760 + 0.0971i
  -0.0760 - 0.0971i
  -0.1070 + 0.0000i
  -0.1273 + 0.0000i
  -0.4658 + 0.0000i
  -1.5269 + 0.0000i

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 6168
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.2475 + 6.9962i
  -0.2475 + 6.9962i
  -0.2475 + 6.9962i
  -0.2475 + 6.9962i
  -0.2475 - 6.9962i
  -0.2475 - 6.9962i
  -0.2475 - 6.9962i
  -0.2475 - 6.9962i

sigma_in = 6168

Stability Diagram from Reduced Dynamics

We extract the stability diagram using continuation of bifurcations. By extending the dynamical system

to an autonomous system of variables the trivial fixed point of the paremtrically excited system can be interpreted as the periodic orbit . Any change of the stability behaviour of this periodic orbit is then given by some bifurcation. At the stability boundary of the principal resonance with nontrivial periodic orbits with response period emerge. If continuation of periodic orbits is used then these bifurcations show up as period doubling ('PD') bifurcations. Initially continuing periodic orbits leads to a saddle node ('SN') bifurcation. The function extract_Stability_Diagram allows to chose between these two options for constructing the stability diagram. Settings

set(S.contOptions,'PtMX',50,'bi_direct',true)
set(S.FRCOptions,'branchSwitch',true)
PlotSD = false;
order  = 3;

% Initial condition and parameter range


omega0 = imag(S.E.spectrum(1));
p0 = [2*omega0,0.1]; % Initial condition

OmegaRange =[13,15];
epRange = [0,1];

% Computation

startSDSSM = tic;
SD = S.extract_Stability_Diagram(resModes, order, OmegaRange,epRange,'amp', p0,'PD',PlotSD);
timings(ii).SDSSM = toc(startSDSSM);

Damping parameter: sigma = 10

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 3300
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i

sigma_in = 3300
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.52E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.10E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.40e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4016e+01      1  EP      1.0000e-01   4.4878e-01
    2  00:00:00   1.4015e+01      2  EP     -3.1225e-17   4.4878e-01

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4016e+01      3  EP      1.0000e-01   4.4878e-01
    2  00:00:01   1.4018e+01      4  PD      2.0819e-01   4.4878e-01
    5  00:00:01   1.4086e+01      5  EP      1.0000e+00   4.4878e-01

 Run='ROM_family_bif1': Continue bifurcations from point 4 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          5.16e-09  2.10e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1036e+01      1  EP      1.4001e+01   4.4878e-01   2.0819e-01
   10  00:00:02   2.0725e+01      2          1.3760e+01   4.5663e-01   4.5515e-01
   20  00:00:03   2.0227e+01      3          1.3345e+01   4.7084e-01   1.1230e+00
   24  00:00:04   1.9855e+01      4  EP      1.3000e+01   4.8332e-01   1.6960e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:04   2.1036e+01      5  EP      1.4001e+01   4.4878e-01   2.0819e-01
   10  00:00:05   2.1364e+01      6          1.4241e+01   4.4120e-01   4.5515e-01
   20  00:00:07   2.1967e+01      7          1.4657e+01   4.2869e-01   1.1230e+00
   24  00:00:07   2.2496e+01      8  EP      1.5000e+01   4.1888e-01   1.6939e+00
Total time spent on Stability Diagram computation = 00:00:11

Damping parameter: sigma = 20

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 3776
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.1238 + 6.9995i
  -0.1238 + 6.9995i
  -0.1238 + 6.9995i
  -0.1238 + 6.9995i
  -0.1238 - 6.9995i
  -0.1238 - 6.9995i
  -0.1238 - 6.9995i
  -0.1238 - 6.9995i

sigma_in = 3776
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.52E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.10E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.40e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4014e+01      1  EP      1.0000e-01   4.4883e-01
    2  00:00:00   1.4013e+01      2  EP     -3.1225e-17   4.4883e-01

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4014e+01      3  EP      1.0000e-01   4.4883e-01
    3  00:00:00   1.4026e+01      4  PD      4.1634e-01   4.4883e-01
    5  00:00:00   1.4085e+01      5  EP      1.0000e+00   4.4883e-01

 Run='ROM_family_bif1': Continue bifurcations from point 4 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          5.28e-09  2.10e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1040e+01      1  EP      1.3999e+01   4.4883e-01   4.1634e-01
   10  00:00:01   2.0544e+01      2          1.3609e+01   4.6168e-01   7.7623e-01
   20  00:00:03   1.9861e+01      3  EP      1.3000e+01   4.8332e-01   1.7310e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:03   2.1040e+01      4  EP      1.3999e+01   4.4883e-01   4.1634e-01
   10  00:00:04   2.1579e+01      5          1.4389e+01   4.3668e-01   7.7624e-01
   20  00:00:06   2.2503e+01      6  EP      1.5000e+01   4.1888e-01   1.7343e+00
Total time spent on Stability Diagram computation = 00:00:07

Damping parameter: sigma = 30

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 5780
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.1857 + 6.9981i
  -0.1857 + 6.9981i
  -0.1857 + 6.9981i
  -0.1857 + 6.9981i
  -0.1857 - 6.9981i
  -0.1857 - 6.9981i
  -0.1857 - 6.9981i
  -0.1857 - 6.9981i

sigma_in = 5780
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.52E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.10E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.40e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4011e+01      1  EP      1.0000e-01   4.4892e-01
    2  00:00:00   1.4011e+01      2  EP     -3.1225e-17   4.4892e-01

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4011e+01      3  EP      1.0000e-01   4.4892e-01
    4  00:00:00   1.4038e+01      4  PD      6.2438e-01   4.4892e-01
    5  00:00:00   1.4082e+01      5  EP      1.0000e+00   4.4892e-01

 Run='ROM_family_bif1': Continue bifurcations from point 4 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          6.24e-08  2.10e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1047e+01      1  EP      1.3996e+01   4.4892e-01   6.2438e-01
   10  00:00:01   2.0409e+01      2          1.3488e+01   4.6583e-01   1.0581e+00
   17  00:00:02   1.9871e+01      3  EP      1.3000e+01   4.8332e-01   1.7878e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:02   2.1047e+01      4  EP      1.3996e+01   4.4892e-01   6.2438e-01
   10  00:00:03   2.1757e+01      5          1.4504e+01   4.3320e-01   1.0581e+00
   17  00:00:05   2.2513e+01      6  EP      1.5000e+01   4.1888e-01   1.7996e+00
Total time spent on Stability Diagram computation = 00:00:05

Damping parameter: sigma = 40

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 6168
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.2475 + 6.9962i
  -0.2475 + 6.9962i
  -0.2475 + 6.9962i
  -0.2475 + 6.9962i
  -0.2475 - 6.9962i
  -0.2475 - 6.9962i
  -0.2475 - 6.9962i
  -0.2475 - 6.9962i

sigma_in = 6168
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.52E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.10E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.40e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4008e+01      1  EP      1.0000e-01   4.4904e-01
    2  00:00:00   1.4007e+01      2  EP     -3.1225e-17   4.4904e-01

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4008e+01      3  EP      1.0000e-01   4.4904e-01
    4  00:00:00   1.4056e+01      4  PD      8.3228e-01   4.4904e-01
    5  00:00:00   1.4078e+01      5  EP      1.0000e+00   4.4904e-01

 Run='ROM_family_bif1': Continue bifurcations from point 4 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          3.01e-08  2.11e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1056e+01      1  EP      1.3992e+01   4.4904e-01   8.3228e-01
   10  00:00:01   2.0303e+01      2          1.3385e+01   4.6942e-01   1.3175e+00
   15  00:00:02   1.9885e+01      3  EP      1.3000e+01   4.8332e-01   1.8644e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:02   2.1056e+01      4  EP      1.3992e+01   4.4904e-01   8.3228e-01
   10  00:00:03   2.1913e+01      5          1.4600e+01   4.3036e-01   1.3175e+00
   16  00:00:04   2.2527e+01      6  EP      1.5000e+01   4.1888e-01   1.8873e+00
Total time spent on Stability Diagram computation = 00:00:05

Verification: Collocation using coco

Dankowicz, H., & Schilder, F. (2013). Recipes for Continuation, SIAM Philadelphia. https://doi.org/10.1137/1.9781611972573

nCycles = 10;
coco_sd = cocoWrapper(DS, nCycles, []);
set(coco_sd.Options, 'PtMX',100, 'bi_direct',true,'NAdapt',0);
set(coco_sd,'branchSwitch',true)

startcoco = tic;
SD_full = coco_sd.extract_Stability_Diagram(OmegaRange,epRange,'amp',p0,'PD',PlotSD);
timings(ii).cocoFRC = toc(startcoco);

% Save results
name = strcat('SD_damp',num2str(sigma),'n',num2str(2*nElements));
save(name, 'SD','SD_full')
ii = ii + 1;

Damping parameter: sigma = 10

 Run='full_detect_bif': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.98e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.9805e+01      1  EP      1.0000e-01   1.4001e+01
    2  00:00:01   1.9805e+01      2  EP     -3.1225e-17   1.4001e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:01   1.9805e+01      3  EP      1.0000e-01   1.4001e+01
    2  00:00:03   1.9807e+01      4  PD      2.0821e-01   1.4001e+01
    5  00:00:04   1.9855e+01      5  EP      1.0000e+00   1.4001e+01

 Run='full_family_bif_1': Continue bifurcations from point 4 in run 'full_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          6.92e-09  2.11e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1057e+01      1  EP      1.4001e+01   4.4878e-01   2.0821e-01
   10  00:00:03   2.2290e+01      2          1.3919e+01   4.5142e-01   2.4915e-01
   20  00:00:05   2.4632e+01      3          1.3835e+01   4.5416e-01   3.4667e-01
   30  00:00:08   2.7649e+01      4          1.3741e+01   4.5726e-01   4.8037e-01
   40  00:00:11   3.1109e+01      5          1.3614e+01   4.6152e-01   6.7563e-01
   50  00:00:14   3.4758e+01      6          1.3379e+01   4.6964e-01   1.0496e+00
   58  00:00:17   3.6578e+01      7  EP      1.3000e+01   4.8332e-01   1.6543e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:18   2.1057e+01      8  EP      1.4001e+01   4.4878e-01   2.0821e-01
   10  00:00:20   2.0835e+01      9          1.4240e+01   4.4122e-01   4.5704e-01
   20  00:00:24   2.1397e+01     10          1.4626e+01   4.2958e-01   1.0924e+00
   23  00:00:25   2.2007e+01     11  EP      1.5000e+01   4.1888e-01   1.7450e+00
  

Damping parameter: sigma = 20

 Run='full_detect_bif': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.98e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.9803e+01      1  EP      1.0000e-01   1.3999e+01
    2  00:00:01   1.9803e+01      2  EP     -3.1225e-17   1.3999e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:01   1.9803e+01      3  EP      1.0000e-01   1.3999e+01
    3  00:00:03   1.9811e+01      4  PD      4.1644e-01   1.3999e+01
    5  00:00:04   1.9853e+01      5  EP      1.0000e+00   1.3999e+01

 Run='full_family_bif_1': Continue bifurcations from point 4 in run 'full_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.56e-08  2.11e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1082e+01      1  EP      1.3999e+01   4.4883e-01   4.1644e-01
   10  00:00:02   2.2225e+01      2          1.3837e+01   4.5407e-01   4.9517e-01
   20  00:00:05   2.4496e+01      3          1.3673e+01   4.5953e-01   6.8267e-01
   30  00:00:08   2.7448e+01      4          1.3491e+01   4.6574e-01   9.3833e-01
   40  00:00:11   3.0816e+01      5          1.3243e+01   4.7446e-01   1.3130e+00
   47  00:00:14   3.2966e+01      6  EP      1.3000e+01   4.8332e-01   1.6890e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:14   2.1082e+01      7  EP      1.3999e+01   4.4883e-01   4.1644e-01
   10  00:00:17   2.1053e+01      8          1.4364e+01   4.3742e-01   7.4981e-01
   20  00:00:21   2.1988e+01      9          1.4979e+01   4.1946e-01   1.7508e+00
   21  00:00:22   2.2022e+01     10  EP      1.5000e+01   4.1888e-01   1.7870e+00
  

Damping parameter: sigma = 30

 Run='full_detect_bif': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.98e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.9799e+01      1  EP      1.0000e-01   1.3996e+01
    2  00:00:01   1.9799e+01      2  EP     -3.1225e-17   1.3996e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:01   1.9799e+01      3  EP      1.0000e-01   1.3996e+01
    4  00:00:02   1.9818e+01      4  PD      6.2474e-01   1.3996e+01
    5  00:00:03   1.9849e+01      5  EP      1.0000e+00   1.3996e+01

 Run='full_family_bif_1': Continue bifurcations from point 4 in run 'full_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          3.44e-10  2.11e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1109e+01      1  EP      1.3996e+01   4.4892e-01   6.2474e-01
   10  00:00:02   2.2167e+01      2          1.3757e+01   4.5671e-01   7.3813e-01
   20  00:00:05   2.4371e+01      3          1.3516e+01   4.6487e-01   1.0084e+00
   30  00:00:08   2.7261e+01      4          1.3251e+01   4.7418e-01   1.3749e+00
   38  00:00:11   2.9665e+01      5  EP      1.3000e+01   4.8332e-01   1.7452e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:11   2.1109e+01      6  EP      1.3996e+01   4.4892e-01   6.2474e-01
   10  00:00:14   2.1236e+01      7          1.4461e+01   4.3449e-01   1.0142e+00
   19  00:00:17   2.2047e+01      8  EP      1.5000e+01   4.1888e-01   1.8548e+00
  

Damping parameter: sigma = 40

 Run='full_detect_bif': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.98e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:00   1.9794e+01      1  EP      1.0000e-01   1.3992e+01
    2  00:00:01   1.9793e+01      2  EP     -3.1225e-17   1.3992e+01

 STEP      TIME        ||U||  LABEL  TYPE           eps           om
    0  00:00:01   1.9794e+01      3  EP      1.0000e-01   1.3992e+01
    4  00:00:02   1.9828e+01      4  PD      8.3312e-01   1.3992e+01
    5  00:00:03   1.9844e+01      5  EP      1.0000e+00   1.3992e+01

 Run='full_family_bif_1': Continue bifurcations from point 4 in run 'full_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          2.74e-08  2.11e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1140e+01      1  EP      1.3992e+01   4.4904e-01   8.3312e-01
   10  00:00:02   2.2115e+01      2          1.3679e+01   4.5934e-01   9.7810e-01
   20  00:00:05   2.4257e+01      3          1.3364e+01   4.7015e-01   1.3243e+00
   30  00:00:08   2.7089e+01      4          1.3021e+01   4.8254e-01   1.7911e+00
   31  00:00:08   2.7258e+01      5  EP      1.3000e+01   4.8332e-01   1.8212e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:09   2.1140e+01      6  EP      1.3992e+01   4.4904e-01   8.3312e-01
   10  00:00:12   2.1401e+01      7          1.4543e+01   4.3204e-01   1.2660e+00
   17  00:00:15   2.2081e+01      8  EP      1.5000e+01   4.1888e-01   1.9458e+00
end

Plot for paper

timings
BBplotSD(nElements,sigmas); % Plot SD for various damping parameters
timings = 

  1×4 struct array with fields:

    SDSSM
    cocoFRC